引用本文: |
徐江洪1,张冬冬1,邵飞1,徐龙星2,高一峰1.FRP-铝合金平面桁架结构极限承载性能试验研究[J].陆军工程大学,2022,(6):33-39
[点击复制] |
|
|
|
本文已被:浏览 65次 下载 55次 |
FRP-铝合金平面桁架结构极限承载性能试验研究 |
徐江洪1,张冬冬1,邵飞1,徐龙星2,高一峰1 |
(1.陆军工程大学 野战工程学院,江苏 南京 210007;2.陆军研究院,江苏 无锡 214035) |
摘要:为了提升脆性FRP拉挤型材应用于桁架体系时的结构延性承载性能,提出了将金属材料构件和不同组合节点应用于FRP桁架体系的组合设计理念。设计和制备了一榀FRP-铝合金平面桁架模型,通过开展结构四点弯曲极限破坏试验,揭示了结构的全过程非线性位移响应、破坏模式及机理,进而对所提设计理念及结构延性提升措施的可行性进行了验证。试验结果表明:组合平面桁架结构在最终失去承载力之前呈现出组合节点滑移、铝合金上弦杆压屈变形、端部GFRP斜腹杆压溃破坏等多种渐进破坏模式,结构全过程荷载-位移曲线表现出明显的非线性变化趋势,特别是铝合金上弦杆的压屈效应使整体结构具备了明显的延性变形特征。建议可通过对FRP桁架在结构和构件层面进行组合设计,使其获得良好的延性承载性能和破坏预警信息,以提升结构的安全性和鲁棒性。 |
关键词: 桥梁工程 极限承载性能 破坏试验 FRP-铝合金平面桁架 延性性能 破坏模式 |
DOI:10.12018/j .issn.2097-0730.20220418001 |
投稿时间:2022-04-18 |
基金项目:国家自然科学基金(52278230,52008390);江苏省自然科学基金(BK20170752)。 |
|
Experiments of Ultimate Load-CarryingCapacity of FRP-Aluminum Alloy Plane Truss Structure |
XU Jianghong1,ZHANG Dongdong1,SHAO Fei1,XU Longxing2,GAO Yifeng1 |
(1.College of Field Engineering,Army Engineering University of PLA,Nanjing 210007,China;
2.Army Research Institute of PLA,Wuxi 214035,China) |
Abstract: To improve the structural ductility of truss system made of brittle FRP pultruded profiles, a hybrid design concept incorporating ductile aluminum alloy components and different composite joints into the FRP truss system is proposed. In this paper, a hybrid FRP-aluminum alloy plane truss experimental model was designed and manufactured. A four-point bending ultimate failure test was subsequently carried out to explore the whole-process nonlinear load-displacement response, the failure modes and mechanism of the plane truss structure. On this basis, the feasibility of the proposed design concept and measures to improve the structural ductility of FRP truss was verified. The results indicated that before the ultimate loss of bearing capacity, the experimental structure experienced a variety of progressive failure modes, including slipping of the composite joints, buckling deformation of the aluminum alloy top chord, crushing failure of the GFRP web diagonals. During the whole loading process, the load-displacement curve of the structure showed an obvious nonlinear variation, especially with the overall structure obviously deformed in ductility for the bucking and yielding deformation of the compression aluminum top chord. Thus, it is suggested that the FRP truss be optimized through the structural and component hybrid design to obtain the obvious ductility performance and the desired pre-warning of damage so as to improve the security and robustness of the structure. |
Key words: bridge engineering ultimate load-carrying capacity failure testing FRP-aluminum alloy plane truss structure ductility performance failure modes |
|