• 首页
  • 期刊简介
  • 编委会
  • 征稿简则
  • 相关下载
  • 新闻公告
  • 联系我们

稿件处理系统

  • 作者登录
  • 专家登录
  • 编辑登录
  • 主编登录

信息检索

  • 本刊检索
  • 中国知网
  • 万方数据

友情链接

  • 陆军工程大学
  • 中文DOI
  • 中图分类号查询
  • 勤云科技
引用本文: 陈赵懿1,冯柯1,陈志斌2,杨小强1,李焕良1.增量学习的拉曼光谱识别算法[J].陆军工程大学,2023,(4):62-69 [点击复制]
【打印本页】      【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  【关闭】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 81次   下载 96次
增量学习的拉曼光谱识别算法
陈赵懿1,冯柯1,陈志斌2,杨小强1,李焕良1
(1.陆军工程大学 野战工程学院,江苏 南京 210007;2.陆军研究院,河北 石家庄 050000)
摘要:针对拉曼光谱仪内置数据库样本数量少和新增物质光谱无法识别的问题,提出了一种增量学习的拉曼光谱识别算法。构建了基于空间注意力机制的一维膨胀卷积神经网络(convolutional neural network model,CNN_SA),用数据库已有光谱数据对CNN_SA预训练,提取拉曼光谱特征,与逻辑回归(logistic regression,LG)和支持向量机(support vector machine,SVM)等算法相比,CNN_SA具有更好的识别性能。并采用类别增量的学习方式,将CNN_SA学习的先验知识迁移到新增物质的拉曼光谱识别中,极大提高了新增物质小样本拉曼光谱的识别准确率。
关键词:  SERS  光谱识别  卷积神经网络  注意力机制  增量学习
DOI:10.12018/j.issn.2097-0730.20220923001
投稿时间:2022-09-23  
基金项目:军内科研项目(LY20202GK005)
Raman Spectrum Identification Algorithm Based on Incremental Learning
CHEN Zhaoyi1,FENG Ke1,CHEN Zhibin2,YANG Xiaoqiang1,LI Huanliang1
(1.College of Field Engineering,Army Engineering University of PLA,Nanjing 210007,China;2.Army Research Institute,Shijiazhuang 050000,China)
Abstract:  In view of the small number of samples in the built-in database of Raman spectrometer and the inability to identify the spectra of new substances, a Raman spectrum identification algorithm based on incremental learning is proposed. Firstly, a convolutional neural network model (CNN_SA) based on spatial attention mechanism was constructed, and the existing spectral data in the database was used to pre-train CNN_SA to extract the Raman spectral characteristics. Compared with the traditional algorithms, such as logistic regression (LG) and support vector machine (SVM), CNN_SA has better recognition performance. In addition, with class increment learning, the prior knowledge learned by CNN_SA can be transferred to the Raman spectrum recognition of the newly added substances, which greatly increases the identification accuracy of the Raman spectra of the newly added substances.
Key words:  surface enhanced Raman scattering (SERS)  spectrum identification  convolutional neural network (CNN)  attention mechanism  incremental learning

版权所有@陆军工程大学教研保障中心编辑部

技术支持:北京勤云科技发展有限公司